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Lecture No. 3 

Symmetry and other Properties of Matrices and Operators 

Matrices 

𝑨𝑨 𝑈𝑈 = 𝑃𝑃 

Pass U through A  to obtain 𝑃𝑃 

Operators 

𝐿𝐿(𝑢𝑢) = 𝑝𝑝(𝑥𝑥) 

e.g. 

𝐿𝐿(𝑢𝑢) = 𝑎𝑎1
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2 + 𝑎𝑎2

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥 + 𝑎𝑎3𝑢𝑢 

Pass u through L to get p(x) 

Symmetry of a Matrix 

A matrix is symmetric if  𝑨𝑨 = 𝑨𝑨𝑻𝑻  �𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖�. Symmetry is a desirable matrix property. It 

saves on storage space and on the number of operations in manipulating and solving matrices. 
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Positive Definite Matrices 

𝑈𝑈𝑇𝑇𝑨𝑨 𝑈𝑈 = 𝑐𝑐 

    when c > 0 for all 𝑈𝑈  ≠ 0, the matrix A is positive definite. 

• We note that 𝑈𝑈𝑇𝑇𝑈𝑈 > 0 for all  𝑈𝑈. 

• A symmetrical positive definite matrix is desirable relative to both the actual 

implementation of its solution and the properties of the actual solution (since matrix 

eigenvalues are > 0). 

• How can we extend the concepts of symmetry and positive definiteness to an operator? 
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Alternative method for establishing symmetry 

Let’s examine an alternative for establishing symmetric. Assume that the matrix A is 

symmetric: 

𝑌𝑌𝑇𝑇𝑨𝑨 𝑋𝑋 =  𝑌𝑌𝑇𝑇𝑨𝑨𝑇𝑇𝑋𝑋   (since 𝑨𝑨 = 𝑨𝑨𝑇𝑇) 

⇒ 

𝑌𝑌𝑇𝑇𝑨𝑨 𝑋𝑋 = 𝑌𝑌𝑇𝑇𝐶𝐶   where   𝐶𝐶 = 𝑨𝑨𝑇𝑇𝑋𝑋 

⇒ 

𝑌𝑌𝑇𝑇𝑨𝑨 𝑋𝑋 = 𝐶𝐶𝑇𝑇𝑌𝑌     (since 𝑌𝑌𝑇𝑇𝐶𝐶 and 𝐶𝐶𝑇𝑇𝑌𝑌 are scalar products) 

 ⇒ 

𝑌𝑌𝑇𝑇𝑨𝑨 𝑋𝑋 = (𝑨𝑨𝑇𝑇𝑋𝑋)𝑇𝑇𝑌𝑌 

 ⇒ 

𝑌𝑌𝑇𝑇𝑨𝑨 𝑋𝑋 = 𝑋𝑋𝑇𝑇𝑨𝑨𝑇𝑇𝑇𝑇 𝑌𝑌    since    (𝑴𝑴 𝑁𝑁)𝑇𝑇 = 𝑁𝑁 𝑴𝑴𝑇𝑇 

⇒ 

𝑌𝑌𝑇𝑇𝑨𝑨 𝑋𝑋 = 𝑋𝑋𝑇𝑇𝑨𝑨 𝑌𝑌     since     𝑨𝑨𝑇𝑇𝑇𝑇 = 𝑨𝑨 
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Therefore when A is symmetrical: 

      𝑌𝑌𝑇𝑇𝑨𝑨 𝑋𝑋 = 𝑋𝑋𝑇𝑇𝑨𝑨 𝑌𝑌, defines an inner product 

⇒ 

     < 𝑌𝑌,𝑨𝑨 𝑋𝑋 > =< 𝑋𝑋,𝑨𝑨 𝑌𝑌 >, defines an inner product 

We now extend this definition to operators L (u). In general we can state that  

< 𝑣𝑣, 𝐿𝐿(𝑢𝑢) >= < 𝑢𝑢,  𝐿𝐿∗(𝑣𝑣) >  + �(𝐹𝐹(𝑣𝑣)𝐺𝐺(𝑢𝑢) − 𝐹𝐹(𝑢𝑢)𝐺𝐺∗(𝑣𝑣))
𝛤𝛤

𝑑𝑑𝑑𝑑 

Thus in general we can always exchange u and v in a manner similar to the interchange of 

vectors X and Y. Only now we execute this interchange through an integration by parts 

procedure. 

• The operator 𝐿𝐿∗ is the adjoint of L.  If L = 𝐿𝐿∗   then L is self adjoint (in which case we also 

have 𝐺𝐺 = 𝐺𝐺∗). Self adjointness of an operator is analogous to symmetry of a matrix. 

• F and G are differential operators which fall out of the integration by parts procedure 

F (u)     defines the essential b.c.’s which must be enforced at some point in the domain for 

uniqueness 

G (u)     defines the natural b.c.’s 
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• Positive definiteness of a self adjoint operator is defined by the requirement that: 

< 𝐿𝐿(𝑢𝑢),𝑢𝑢 > > 0, ∀𝑢𝑢 ≠ 0 

Which satisfy homogeneous b.c.’s. 

• To establish positive definiteness, we look at the halfway point of the integration by parts of 

< 𝐿𝐿(𝑢𝑢),𝑢𝑢 >. 

Example 

𝐿𝐿(𝑢𝑢) =
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2           0 < 𝑥𝑥 < 1 

< 𝑣𝑣, 𝐿𝐿(𝑢𝑢) > =  �𝑣𝑣
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2 𝑑𝑑𝑥𝑥

1

0

 

Integrating by parts once, defines the halfway point of the process in which we note equal 

derivatives on u and v. 

〈𝑣𝑣, 𝐿𝐿(𝑢𝑢)〉 = �𝑣𝑣
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥�0

1

− �
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥  

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥  𝑑𝑑𝑥𝑥

1

0
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Integrating by parts a second time, completes the transformation: 

〈𝑣𝑣, 𝐿𝐿(𝑢𝑢)〉 = �𝑣𝑣
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

− 𝑢𝑢
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥
�
0

1

+ �𝑢𝑢
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2  𝑑𝑑𝑥𝑥

1

0

 

Comparing this to our “generic” transformation (or integration) defines the various operators 

as well as boundary conditions: 

𝐿𝐿(𝑢𝑢) =
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2

 

𝐿𝐿∗(𝑣𝑣) =
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2 

Therefore 𝐿𝐿 = 𝐿𝐿∗ indicates that the operator is self adjoint (symmetric). The boundary 

conditions are established as: 

  first term   second term    

  𝐹𝐹(𝑣𝑣) = 𝑣𝑣   𝐹𝐹(𝑢𝑢) = 𝑢𝑢    u  represents the essential b.c 

  𝐺𝐺(𝑢𝑢) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  𝐺𝐺∗(𝑣𝑣) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 represents the natural b.c 
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Assuming v = u and homogeneous b.c.’s the first integration by parts yields: 

�𝑢𝑢𝐿𝐿(𝑢𝑢)𝑑𝑑𝑥𝑥 = −��
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥
�
2

𝑑𝑑𝑥𝑥
1

0

1

0

 

 Therefore L(u) is negative definite. 

 

 

Summary of Symmetry and other properties of Matrices and Operators 

• The matrix A is symmetrical if for any vectors X and Y 

𝑋𝑋𝑇𝑇�𝑨𝑨 𝑌𝑌� = 𝑌𝑌𝑇𝑇�𝑨𝑨 𝑋𝑋�   →    < 𝑋𝑋,𝑨𝑨 𝑌𝑌 > = < 𝑌𝑌,𝑨𝑨 𝑋𝑋 > 

• We extend this inner product definition of symmetry to operators: We can always state 

< 𝑣𝑣, 𝐿𝐿(𝑢𝑢) > = < 𝑢𝑢,  𝐿𝐿∗(𝑣𝑣) > +�(𝐹𝐹(𝑣𝑣) 𝐺𝐺(𝑢𝑢) − 𝐹𝐹(𝑢𝑢)𝐺𝐺∗(𝑣𝑣))𝑑𝑑𝑑𝑑
𝛤𝛤

 

Thus we interchange the roles of u and v through an integration by parts procedure. We also 

define b.c.’s through this process! 
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Important Consequences of the Integration by Parts Procedure 

1. Provides information about the operator L 

If 𝐿𝐿 = 𝐿𝐿∗, the operator is self adjoint (symmetrical). 

The procedure also allows us to establish whether the operator is positive definite (we 

look at the halfway point). 

2. The procedure allows us to determine the characteristics of the matrix produced for the 

Galerkin method and a given operator L. 

3a. Defines the b.c.’s for the given operator. 

 essential b.c.’s = 𝐹𝐹(𝑢𝑢) 

 natural b.c.’s = 𝐺𝐺(𝑢𝑢) and 𝐺𝐺∗(𝑢𝑢) 

3b. The procedure will also provide a mechanism for us to develop a “weak” formulation 

where we can relax some of the admissibility requirements for boundary condition 

satisfaction. 
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  4. The procedure provides a mechanism for changing derivatives on operators.  

We noted that derivatives taken at the halfway points of our integration by parts procedure 

were always  lower. This will allow us to establish “weak” formulations where we can lower 

some of the  admissibility for functional continuity. 
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Example 

Consider              𝐿𝐿(𝑢𝑢) = 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑎𝑎𝑜𝑜(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� + 𝑎𝑎1(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑎𝑎2(𝑥𝑥)𝑢𝑢 

The first term represents diffusion, the second term convection and the third term decay. 

Let’s integrate by parts such that    〈𝑣𝑣, 𝐿𝐿(𝑢𝑢)〉 → 〈𝑢𝑢, 𝐿𝐿∗(𝑣𝑣)〉 

Thus we define the inner product as: 

< 𝑣𝑣, 𝐿𝐿(𝑢𝑢) > = � �
𝑑𝑑
𝑑𝑑𝑥𝑥

�𝑎𝑎𝑜𝑜
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥� + 𝑎𝑎1

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥 + 𝑎𝑎2𝑢𝑢�

𝑉𝑉

𝑣𝑣𝑑𝑑𝑥𝑥 

Integrating the first term by parts we have: 

�
𝑑𝑑
𝑑𝑑𝑥𝑥

𝑉𝑉

�𝑎𝑎𝑜𝑜
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥
� 𝑣𝑣𝑑𝑑𝑥𝑥 = �(𝑣𝑣)𝑑𝑑

𝑉𝑉

�𝑎𝑎𝑜𝑜
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥
� 

                                                                             = �𝑣𝑣𝑎𝑎𝑜𝑜
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝛤𝛤
− ∫ 𝑎𝑎𝑜𝑜

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑(𝑣𝑣)𝑉𝑉  

                                                                             = �𝑣𝑣𝑎𝑎𝑜𝑜
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝛤𝛤
− ∫ 𝑎𝑎𝑜𝑜

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑉𝑉

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥 

Substituting into the definition of our inner product 
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< 𝑣𝑣, 𝐿𝐿(𝑢𝑢) > = �𝑣𝑣𝑎𝑎𝑜𝑜
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥�𝛤𝛤

+ �� −𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

𝑉𝑉

+ 𝑎𝑎1𝑣𝑣
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥 + 𝑎𝑎2𝑢𝑢𝑣𝑣�𝑑𝑑𝑥𝑥 

Now perform a second integration by parts on the first term: 

� −𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥 = � −𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

𝑉𝑉

𝑑𝑑𝑢𝑢
𝑉𝑉

 

= �−𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥 𝑢𝑢�𝛤𝛤

+ � 𝑢𝑢 𝑑𝑑
𝑉𝑉

�𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥� 

= �−𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥 𝑢𝑢�𝛤𝛤

+ � 𝑢𝑢
𝑑𝑑
𝑑𝑑𝑥𝑥

𝑉𝑉

�𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥� 𝑑𝑑𝑥𝑥 
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In addition perform an integration by parts on the second term: 

� 𝑎𝑎1𝑣𝑣
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥
𝑉𝑉

= � 𝑎𝑎1𝑣𝑣𝑑𝑑𝑢𝑢
𝑉𝑉

= |𝑎𝑎1𝑣𝑣𝑢𝑢|𝛤𝛤 − � 𝑢𝑢𝑑𝑑(𝑎𝑎1𝑣𝑣)
𝑉𝑉

= |𝑎𝑎1𝑣𝑣𝑢𝑢|𝛤𝛤 − � 𝑢𝑢
𝑉𝑉

𝑑𝑑(𝑎𝑎1𝑣𝑣)
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥 

Substituting into our halfway point of the integration by parts process, we complete the 
transformation: 

< 𝑣𝑣, 𝐿𝐿(𝑢𝑢) > =  �𝑎𝑎𝑜𝑜
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

𝑣𝑣 + 𝑢𝑢 �𝑎𝑎1𝑣𝑣 − 𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥
��
𝛤𝛤

+ � �
𝑑𝑑
𝑑𝑑𝑥𝑥

�𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥
� −

𝑑𝑑(𝑎𝑎1𝑣𝑣)
𝑑𝑑𝑥𝑥

+ 𝑎𝑎2𝑣𝑣� 𝑢𝑢𝑑𝑑𝑥𝑥
𝑉𝑉

 

Thus: 

𝐿𝐿(𝑢𝑢) =
𝑑𝑑
𝑑𝑑𝑥𝑥 �𝑎𝑎𝑜𝑜(𝑥𝑥)

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥� + 𝑎𝑎1(𝑥𝑥)

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥 + 𝑎𝑎2(𝑥𝑥)𝑢𝑢 

                                       𝐿𝐿∗(𝑣𝑣) = 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑎𝑎𝑜𝑜(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� − 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑎𝑎1(𝑥𝑥)𝑣𝑣) + 𝑎𝑎2(𝑥𝑥)𝑣𝑣 

Therefore the operator L is not in general self adjoint. 

• However, the diffusion and decay terms give symmetry and thus self adjointness. The 
convection term gives skew symmetry and is not self adjoint. Therefore if 𝑎𝑎1 ≠ 0 ⇒ 𝐿𝐿 
is not self adjoint. 
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• Consider 𝑎𝑎1 = 0.   𝐿𝐿 = 𝐿𝐿∗   ⇒   𝐿𝐿 is self adjoint 

Let’s now establish the b.c.’s for this special case: 

� �
𝑑𝑑
𝑑𝑑𝑥𝑥 �𝑎𝑎𝑜𝑜

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥� + 𝑎𝑎2𝑢𝑢�

𝑉𝑉

𝑣𝑣𝑑𝑑𝑥𝑥 = �𝑎𝑎𝑜𝑜
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥 𝑣𝑣 − 𝑢𝑢𝑎𝑎𝑜𝑜

𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥�𝛤𝛤

+ � �
𝑑𝑑
𝑑𝑑𝑥𝑥

�𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥� + 𝑎𝑎2𝑣𝑣� 𝑢𝑢𝑑𝑑𝑥𝑥

𝑉𝑉

 

 

Since this is a self adjoint case 𝐿𝐿 = 𝐿𝐿 ∗ and 𝐺𝐺 = 𝐺𝐺 ∗ 

 𝐹𝐹(𝑣𝑣) → essential b.c.’s 𝐹𝐹(𝑣𝑣) ≡ 𝑣𝑣 → must prescribe the function (for uniqueness) 

 𝐺𝐺(𝑢𝑢) → natural b.c.’s 𝐺𝐺(𝑢𝑢) = 𝑎𝑎𝑜𝑜
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
→ can prescribe derivatives of the function 
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Prescription of b.c.’s 

• Essential b.c.’s must be specified at least one point on the boundary. 

• We cannot specify natural and essential b.c.’s at the same point. 

Examine the following simple case: 
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

= 𝑓𝑓    where   f = constant 

Integrating we have:  

𝑤𝑤 = 𝑐𝑐𝑜𝑜 + 𝑐𝑐1𝑥𝑥 +
1
2 𝑓𝑓𝑥𝑥

2 

Where co and c1 are the constants of integration 

However   𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑

= 𝑐𝑐1 + 𝑓𝑓𝑥𝑥   →    the   𝑐𝑐𝑜𝑜   term disappears 

 

Therefore if the b.c.’s only involve  𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑

, we can only compute one coefficient! 

Therefore specifying the function w  as a b.c. is “essential” to getting a unique solution. 
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Halfway point of the integration by parts 

When the operator is symmetrical, you can select b.c.’s at the halfway point of the integration 

by parts procedure. Therefore the b.c.’s picked up during the second half of the integration by 

parts are the same (except that u and v are interchanged and with a minus sign). 

At the halfway point: 

� �
𝑑𝑑
𝑑𝑑𝑥𝑥 �𝑎𝑎𝑜𝑜

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥� + 𝑎𝑎2𝑢𝑢� 𝑣𝑣𝑑𝑑𝑥𝑥 = �𝑎𝑎𝑜𝑜

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥 𝑣𝑣�𝛤𝛤

+ � �−𝑎𝑎𝑜𝑜
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥 + 𝑎𝑎2𝑢𝑢𝑣𝑣� 𝑑𝑑𝑥𝑥

𝑉𝑉𝑑𝑑

 

 

Defines 

𝐺𝐺(𝑢𝑢) = 𝑎𝑎𝑜𝑜
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥 

𝐹𝐹(𝑣𝑣) = 𝑣𝑣 

Also note that we have equal order derivatives on u and v at this point of the integration! 
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Integration by parts for 2-D 

Use Green’s theorem: 

�� 𝑓𝑓𝑔𝑔,𝑑𝑑 𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑 = � 𝑓𝑓 𝑔𝑔 cos(𝑛𝑛, 𝑥𝑥)𝑑𝑑𝑑𝑑
𝛤𝛤Ω

− �� 𝑔𝑔 𝑓𝑓,𝑑𝑑 𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑
Ω

 

Where cos (n, x) defines the direction cosine. 
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Example 

Consider Poisson’s equation: 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑑𝑑2

+ 𝑓𝑓(𝑥𝑥,𝑑𝑑) = 0 

⇒ 

𝛻𝛻2𝑢𝑢 + 𝑓𝑓(𝑥𝑥,𝑑𝑑) = 0 

We define the inner product as: 

���𝑢𝑢,𝑑𝑑𝑑𝑑 + 𝑢𝑢,𝑦𝑦𝑦𝑦�𝑣𝑣𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑 = �(𝑢𝑢,𝑑𝑑𝛼𝛼𝑛𝑛𝑑𝑑 + 𝑢𝑢,𝑦𝑦𝛼𝛼𝑛𝑛𝑦𝑦)𝑣𝑣𝑑𝑑𝑑𝑑
𝛤𝛤Ω

 

−���𝑢𝑢,𝑑𝑑𝑣𝑣,𝑑𝑑 + 𝑢𝑢,𝑦𝑦𝑣𝑣,𝑦𝑦�𝑑𝑑Ω
Ω

 

 essential b.c. is    𝑢𝑢 = 𝑢𝑢    (overbar indicates user specified) 

 natural b.c. is    𝜕𝜕𝑑𝑑
𝜕𝜕𝑛𝑛

= 𝑢𝑢,𝑑𝑑𝛼𝛼𝑛𝑛𝑑𝑑 + 𝑢𝑢,𝑦𝑦𝛼𝛼𝑛𝑛𝑦𝑦 = 𝑞𝑞 

Integrating once more we conclude that the operator L is self adjoint. 

 


